skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Cook, William G"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract In a systematic study, we use an equivalent pair of improved numerical relativity codes based on a tetrad-formulation of the classical Einstein-scalar field equations to examine whether slow contraction or inflation (or both) can resolve the homogeneity, isotropy and flatness problems. Our finding, based on a set of gauge/frame invariant diagnostics and the models considered, is that slow contraction robustly and rapidly smooths and flattens spacetimebeginning from initial conditions that are outside the perturbative regime of the flat Friedmann-Robertson-Walker metric, whereas inflation fails these tests. We present new numerical evidence supporting the conjecture that the combination of ultralocal evolution and an effective equation-of-state with pressure much greater than energy density is the key to having robust and rapid smoothing. The opposite of ultralocality occurs in expanding spacetimes, which is the leading obstruction to smoothing following a big bang. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
  4. null (Ed.)